TechyMagThings

Breaking

Friday, 20 February 2026

February 20, 2026

Electric Jeep With Modified Prius Hardware

On the list of cars widely regarded as the most reliable vehicles ever built, up there with the Toyota Land Cruiser, the Honda Civic, and the Mercedes W123 diesels, is the unassuming Toyota Prius. Although it adds a bit of complexity with its hybrid drivetrain, its design eliminates a number of common wear items and also tunes it for extreme efficiency, lengthening its life and causing minimal mechanical stress. The Prius has a number of other tricks up its sleeve as well, which is why parts of its hybrid systems are often used in EV conversions like [Jeremy]’s electric CJ-5 Jeep.

Inside the Prius inverter is a buck/boost converter used for stepping up the battery voltage to power the inverter and supply power to the electric motor. [Jeremy]’s battery is much higher voltage than the stock Prius battery pack, though, which means he can bypass the converter and supply energy from his battery directly to the inverter. Since the buck/boost converter isn’t being used, he can put it to work doing other things. In this case, he’s using it as a charger. Sending the AC from a standard EV charging cord through a rectifier and then to this converter allows the Prius hardware to charge the Jeep’s battery, without adding much in the way of extra expensive electronics.

There are some other modifications to the Prius equipment in this Jeep, though, namely that [Jeremy] is using an open-source controller as the brain of this conversion. Although this video only goes into detail on some of the quirks of the Prius hardware, he has a number of other videos documenting his journey to convert this antique Jeep over to a useful electric farm vehicle which are worth checking out as well. There are plenty of other useful things that equipment from hybrid and electric vehicles can do beyond EV conversions as well, like being used for DIY powerwalls.



February 20, 2026

Displaying the Rainbow

True or false? Your green laser pointer is more powerful than your red one. The answer is almost certainly false. They are, most likely, the same power, but your eye is far more sensitive to green, so it seems stronger. [Brandon Li] was thinking about how to best represent colors on computer screens and fell down the rabbit hole of what colors look like when arranged in a spectrum. Spoiler alert: almost all the images you see of the spectrum are incorrect in some way. The problem isn’t in our understanding of the physics, but more in the understanding of how humans perceive color.

Perception may start with physics, but it also extends to the biology of your eye and the psychology of your brain. What follows is a lot of math that finally winds up with the CIE 1931 color space diagram and the CIE 2012 system.

Some people obsess about fonts, and some about colors. If you are in the latter camp, this is probably old hat for you. However, if you want a glimpse into just how complicated it is to accurately represent colors, this is a fascinating read. You can learn about the Bezold-Brücke shift, the Helmholtz-Kohlrausch effect, and the Abney effect. Maybe that’ll help you win a bar bet one day.

The post winds up in the strangest place: spectroscopy. So if you want to see how color representation applies to analyzing blue sky, neon tubes, and a MacBook display, you’ll want to skip to the end.

We’ve nerded out on color spaces before. In some cases, the right representation is everything.



February 20, 2026

Panoramic Film Camera Made from 3D Printed Parts

Even though digital cameras have lowered the barrier of entry to photography dramatically, as well as made it much easier for professionals and amateurs alike to capture stunning images without the burden of developing film, the technology behind them is considerably more complex than their analog counterparts. In fact, an analog film camera (not counting the lens) can be as simple as a lightproof box and a way to activate a shutter. Knowing that, any kind of film camera could be built for any number of applications, like this 3D-printed panoramic camera from [Denis Aminev].

The custom-built camera works by taking a standard roll of 35mm film, which is standardized to take 36 pictures, and exposing a wider section of the film to create a panorama. This reduces the number of pictures on the roll to 19. This is the fifth version of this camera, called the Infidex 176 V, and has everything a standard film camera would have, from an exposure counter, pressure plate for the film, a winder, interchangable lenses, a viewfinder, and a tripod mounting point. It does take a bit of work to assemble, as shown in the video linked below, but the final result is impressive and delivers a custom finished product not easily found or reproducible in off-the-shelf cameras.

The path to creating this camera was interesting as well, as [Denis]’s first custom film camera was a pinhole camera. From there he moved on to disassembling an SLR camera and attempting to reproduce all of its parts with 3D printed ones. With that in hand, he was able to modify this design into this panoramic camera which he likes because it reproduces the feel of widescreen movies. Although this camera reproduces all of the bells and whistles of a high quality analog camera, not all of these features are strictly necessary for taking pictures on film. Have a look at this minimum viable camera as well.



February 20, 2026

Porting Super Mario 64 To the Original Nintendo DS

Considering that the Nintendo DS already has its own remake of Super Mario 64, one might be tempted to think that porting the original Nintendo 64 version would be a snap. Why you’d want to do this is left as an exercise to the reader, but whether due to nostalgia or out of sheer spite, the question of how easy this would be remains. Correspondingly, [Tobi] figured that he’d give it a shake, with interesting results.

Of note that is someone else already ported SM64 to the DSi, which is a later version of the DS with more processing power, more RAM and other changes. The reason why the 16 MB of RAM of the DSi is required, is because it needs to load the entire game into RAM, rather than do on-demand reads from the cartridge. This is why the N64 made do with just 4 MB of RAM, which is as much RAM as the ND has. Ergo it can be made to work.

The key here is NitroFS, which allows you to implement a similar kind of segmented loading as the N64 uses. Using this the [Hydr8gon] DSi port could be taken as the basis and crammed into NitroFS, enabling the game to mostly run smoothly on the original DS.

There are still some ongoing issues before the project will be released, mostly related to sound support and general stability. If you have a flash cartridge for the DS this means that soon you too should be able to play the original SM64 on real hardware as though it’s a quaint portable N64.



Thursday, 19 February 2026

February 19, 2026

Poking at the ESP32-P4 and -C6 Dies in an ESP32-P4-M3 Module

The RF section of the ESP32-C6 die. (Credit: electronupdate, YouTube)
The RF section of the ESP32-C6 die. (Credit: electronupdate, YouTube)

With the ESP32-P4 not having any wireless functionality and instead focusing on being a small SoC, it makes sense to combine it with a second chip that handles features like WiFi and Bluetooth. This makes the Guition ESP32-P4-M3 module both a pretty good example of how the P4 will be used, and an excellent opportunity to tear into, decap and shoot photos of the dies of both the P4 and the ESP32-C6 in this particular module, courtesy of [electronupdate]. There also the blog post for those who just want to ogle the shinies.

After popping the metal shield on the module, you can see the contents as in the above photo. The P4 inside is a variant with 32 MB of PSRAM integrated along with the SoC die. This results in a die shot both of this PSRAM and the P4 die, though enough of the top metal seems to remain to clearly see the latter.

The Boya brand Flash chip is quite standard inside, and along with a glance at the inside of one of the crystal oscillators we get to glance at the inside of the C6 MCU. This is a much more simple chip than the P4, with the RF section quite obvious. The total die sizes are 2.7 x 2.7 mm for the C6 and 4.29 x 3.66 mm for the P4.



February 19, 2026

RP2040 Powers A MIDI-Controlled Soundboard

When you’re livestreaming, it can be tempting to fire off all kinds of wacky sound effects like you’re a morning radio DJ back in the heady days of 1995. If that’s who you want to be, you might like this soundboard project from [Biker Glen].

The build is based around an RP2040 microcontroller. It’s paired with an I2S digital-to-analog converter for sound output, which in turn feeds a small amplifier hooked up to a speaker or a line output.  The RP2040 is programmed to respond to MIDI commands by playing various sounds in response, which are loaded off a microSD card. It’s able to act as a USB MIDI host, which allows it to work seamlessly with all sorts of off-the-shelf MIDI controllers like the MIDI Fighter or the Novation Launchpad.

It’s an interesting hardware solution to a problem that you could probably also solve with software on your streaming machine, especially if you’ve already got a USB MIDI controller. However, there’s something to be said for lightening the load when your streaming computer is already doing lots of hard work to truck video up to the cloud already. Files are on Github if you’re eager to replicate the build.

Soundboards are just fun, which is why we’ve featured them before. Meanwhile, if you’re whipping up your own streaming accessories at home, be sure to let us know on the tipsline!



February 19, 2026

Fixing a Destroyed XBox 360 Development Kit

As common as the Xbox 360 was, the development kits (XDKs) for these consoles are significantly less so. This makes it even more tragic when someone performs a botched surgery on one of these rare machines, leaving it in dire straits. Fortunately [Josh Davidson] was able to repair the XDK in question for a customer, although it entailed replacing the GPU, CPU and fixing many traces.

The Xbox 360 Development Kit is effectively a special version of the consumer console — with extra RAM and features that make debugging software on the unit much easier, such as through direct access to RAM contents. They come in a variety of hardware specifications that developed along with the game console during its lifecycle, with this particular XDK getting an upgrade to being a Super Devkit with fewer hardware restrictions.

Replacing the dead GPU was a new old stock Kronos 1 chip. Fortunately the pads were fine underneath the old GPU, making it easy to replace. After that various ripped-off pads and traces were discovered underneath the PCB, all of which had to be painstakingly repaired. Following this the CPU had apparently suffered heat damage and was replaced with a better CPU, putting this XDK back into service.